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WHY I WROTE THIS BOOK

Students who perform poorly on organic chemistry exams often report having invested count-
less hours studying. Why do many students have difculty preparing themselves for organic 
chemistry exams? Certainly, there are several contributing factors, including inefcient study 
habits, but perhaps the most dominant factor is a fundamental disconnect between what students 
learn in the lecture hall and the tasks expected of them during an exam. To illustrate the discon-
nect, consider the following analogy. 

Imagine that a prestigious university ofers a course entitled “Bike-Riding 101.” Troughout 
the course, physics and engineering professors explain many concepts and principles (for exam-
ple, how bicycles have been engineered to minimize air resistance). Students invest signifcant 
time studying the information that was presented, and on the last day of the course, the fnal 
exam consists of riding a bike for a distance of 100 feet. A few students may have innate talents 
and can accomplish the task without falling. But most students will fall several times, slowly 
making it to the fnish line, bruised and hurt; and many students will not be able to ride for 
even one second without falling. Why? Because there is a disconnect between what the students 
learned and what they were expected to do for their exam. 

Many years ago, I noticed that a similar disconnect exists in traditional organic chemistry 
instruction. Tat is, learning organic chemistry is much like bicycle riding; just as the students in 
the bike-riding analogy were expected to ride a bike after attending lectures, it is often expected 
that organic chemistry students will independently develop the necessary skills for solving prob-
lems. While a few students have innate talents and are able to develop the necessary skills inde-
pendently, most students require guidance. Tis guidance was not consistently integrated within 
existing textbooks, prompting me to write the frst edition of my textbook, Organic Chemistry, 
1e. Te main goal of my text was to employ a skills-based approach to bridge the gap between 
theory (concepts) and practice (problem-solving skills). Te phenomenal success of the frst 
edition has been extremely gratifying because it provides strong evidence that my skills-based 
approach is indeed efective at bridging the gap described above. 

I frmly believe that the scientifc discipline of organic chemistry is NOT merely a compila-
tion of principles, but rather, it is a disciplined method of thought and analysis. Students must 
certainly understand the concepts and principles, but more importantly, students must learn 
to think like organic chemists . . . that is, they must learn to become profcient at approaching 
new situations methodically, based on a repertoire of skills. Tat is the true essence of organic 
chemistry.

A SKILLS-BASED APPROACH

To address the disconnect in organic chemistry instruction, I have developed a skills-based 
approach to instruction. Te textbook includes all of the concepts typically covered in an organic 
chemistry textbook, complete with conceptual checkpoints that promote mastery of the concepts, 
but special emphasis is placed on skills development through SkillBuilders to support these 
concepts. Each SkillBuilder contains 3 parts:

Learn the Skill: contains a solved problems that demonstrates a particular skill.

Practice the Skill: includes numerous problems (similar to the solved problem in Learn the 
Skill) that give students valuable opportunities to practice and master the skill.

Apply the Skill: contains one or two more challenging problems in which the student must 
apply the skill in a slightly diferent environment. Tese problems include conceptual, cumu-
lative, and applied problems that encourage students to think outside of the box. Sometimes 
problems that foreshadow concepts introduced in later chapters are also included.
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At the end of each SkillBuilder, a Need More Practice? reference suggests end-of-chapter 
problems that students can work to practice the skill.

Tis emphasis upon skills development will provide students with a greater opportunity 
to develop profciency in the key skills necessary to succeed in organic chemistry. Certainly, 
not all necessary skills can be covered in a textbook. However, there are certain skills that are 
fundamental to all other skills.

As an example, resonance structures are used repeatedly throughout the course, and stu-
dents must become masters of resonance structures early in the course. Terefore a signifcant 
portion of Chapter 2 is devoted to pattern-recognition for drawing resonance structures. Rather 
than just providing a list of rules and then a few follow-up problems, the skills-based approach 
provides students with a series of skills, each of which must be mastered in sequence. Each skill 
is reinforced with numerous practice problems. Te sequence of skills is designed to foster and 
develop profciency in drawing resonance structures.

As another example of the skills-based approach, Chapter 7, Substitution Reactions, places 
special emphasis on the skills necessary for drawing all of the mechanistic steps for SN2 and SN1 
processes. Students are often confused when they see an SN1 process whose mechanism is com-
prised of four or fve mechanistic steps (proton transfers, carbocation rearrangements, etc.). Tis 
chapter contains a novel approach that trains students to identify the number of mechanistic 
steps required in a substitution process. Students are provided with numerous examples and are 
given ample opportunity to practice drawing mechanisms.

Te skills-based approach to organic chemistry instruction is a unique approach. Certainly, 
other textbooks contain tips for problem solving, but no other textbook consistently presents 
skills development as the primary vehicle for instruction.

WHAT’S NEW IN THIS EDITION

Peer review played a very strong role in the development of the frst edition of Organic Chemistry. 
Specifcally, the frst edition manuscript was reviewed by nearly 500 professors and over 5,000 
students. In preparing the second edition, peer review has played an equally prominent role. 
We have received a tremendous amount of input from the market, including surveys, class tests, 
diary reviews, and phone interviews. All of this input has been carefully culled and has been 
instrumental in identifying the focus of the second edition.

Literature-based Challenge Problems 
Te frst edition of my textbook, Organic Chemistry 1e, was written to address a gap between 
theory (concepts) and practice (problem-solving skills). In Organic Chemistry 2e, I have endeav-
ored to bridge yet another gap between theory and practice. Specifcally, students who have 
studied organic chemistry for an entire year are often left profoundly disconnected from the 
dynamic and exciting world of research in the feld of organic chemistry. Tat is, students are 
not exposed to actual research performed by practicing organic chemists around the world. To 
bridge this gap and to address market feedback suggesting that the text would beneft from a 
larger number of challenge problems, I’ve created literature-based Challenge Problems for this 
edition. Tese problems will expose students to the fact that organic chemistry is an evolving, 
active branch of science, central to addressing global challenges. 

Te literature-based Challenge Problems are more challenging than the problems presented 
in the text’s SkillBuilders because they require the students to think “outside the box” and to pre-
dict or explain an unexpected observation.  Over 225 new literature-based Challenge Problems 
have been added in Organic Chemistry, 2e. All of these problems are based on the chemical litera-
ture and include references. Te problems are all designed to be thought-provoking puzzles that 
are challenging, but possible to solve with the principles and skills developed in the textbook. 
Te inclusion of literature-based problems will expose students to exciting real-world examples 
of chemical research being conducted in real laboratories. Students will see that organic chem-
istry is a vibrant feld of study, with endless possibilities for exploration and research that can 
beneft the world in very concrete ways. Most chapters of Organic Chemistry, 2e will have 8-10 
literature-based Challenge Problems. Tese problems are all coded for assigning and grading in 



WileyPLUS. In addition, within the WileyPLUS course for Organic Chemistry, 2e, I’ve created 
problem solving videos that provide key strategies for solving a subset of these problems.

Rewriting for Clarity
In response to market feedback a few sections in the textbook have been rewritten for clarity: 
Chapter 7: Substitution Reactions/Section 7.5: The SN1 Mechanism 

•	 Te discussion of the rate-determining step has been revised to focus on the highest 
energy transition state. A more detailed discussion of the thermodynamic principles 
involved is now included.

Chapter 20: Aldehydes and Ketones/Section 20.7: Mechanism Strategies 

•	 Te section on hydrolysis, as well as the corresponding SkillBuilder, have been rewritten 
for clarity. 

Chapter 20: Aldehydes and Ketones/Section 20.10: Carbon Nucleophiles 

•	 Te discussion of the Wittig reaction mechanism has been revised to better refect the 
observations and insights discussed in the literature.

Applications and Chapter Openers
Much like the literature-based Challenge Problems underscore the relevance of organic chemis-
try to current research in the feld, the Medically Speaking and Practically Speaking applications 
demonstrate how the frst principles of organic chemistry are relevant to practicing physicians 
and have everyday commercial applications. We have received very positive feedback from the 
market regarding these applications. In recognition of the fact that some applications generate 
more interest than others, we’ve replaced approximately 10% of the applications, to make them 
even more relevant and exciting. Since these applications are often foreshadowed in the Chapter 
Openers, many Chapter Openers have been revised as well.

Reference Materials
An appendix containing rules for naming polyfunctional compounds as well as a reference table 
of pKa values are now included.

In addition, all known errors, inaccuracies, or ambiguities have been corrected in the sec-
ond edition.

TEXT ORGANIZATION

Te sequence of chapters and topics in Organic Chemistry, 2e do not difer markedly from that 
of other organic chemistry textbooks. Indeed, the topics are presented in the traditional order, 
based on functional groups (alkenes, alkynes, alcohols, ethers, aldehydes and ketones, carboxylic 
acid derivatives, etc.). Despite this traditional order, a strong emphasis is placed on mechanisms, 
with a focus on pattern recognition to illustrate the similarities between reactions that would 
otherwise appear unrelated (for example, acetal formation and enamine formation, which are 
mechanistically quite similar). No shortcuts were taken in any of the mechanisms, and all steps 
are clearly illustrated, including all proton transfer steps.

Two chapters (6 and 12) are devoted almost entirely to skill development and are generally 
not found in other textbooks. Chapter 6, Chemical Reactivity and Mechanisms, emphasizes skills 
that are necessary for drawing mechanisms, while Chapter 12, Synthesis, prepares the students 
for proposing syntheses. Tese two chapters are strategically positioned within the traditional 
order described above and can be assigned to the students for independent study. Tat is, these 
two chapters do not need to be covered during precious lecture hours, but can be, if so desired.

Te traditional order allows instructors to adopt the skills-based approach without having 
to change their lecture notes or methods. For this reason, the spectroscopy chapters (Chapters 
15 and 16) were written to be stand-alone and portable, so that instructors can cover these chap-
ters in any order desired. In fact, fve of the chapters (Chapters 2, 3, 7, 13, and 14) that precede 
the spectroscopy chapters include end-of-chapter spectroscopy problems, for those students who 
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covered spectroscopy earlier. Spectroscopy coverage also appears in subsequent functional group 
chapters, specifcally Chapter 18 (Aromatic Compounds), Chapter 20 (Aldehydes and Ketones), 
Chapter 21 (Carboxylic Acids and Teir Derivatives), Chapter 23 (Amines), Chapter 24  
(Carbohydrates), and Chapter 25 (Amino Acids, Peptides, and Proteins).

THE WileyPLUS ADVANTAGE

WileyPLUS is a research-based online environment for efective teaching and learning. 
WileyPLUS is packed with interactive study tools and resources, including the complete online 
textbook. 

New to WileyPLUS for Organic Chemistry, 2e
WileyPLUS for Organic Chemistry, 2e highlights David Klein’s innovative pedagogy and teach-
ing style:

•• NEW Solved Problem Videos by David Klein, extends the SkillBuilding pedagogy 
by walking students through problem solving strategies for the new end of chapter 
literature-based Challenge Problems.

•• NEW Guided Online (GO) Tutorials walk students step-by-step through solving the 
problem using David Klein’s problem-solving pedagogy.

•• NEW Do you Remember? Practice Quizzes help students prepare for chapter course 
materials by evaluating students’ foundational knowledge.

WileyPLUS for Organic Chemistry, 2e is now supported by an adaptive learning module called 
ORION. Based on cognitive science, ORION provides students with a personal, adaptive learn-
ing experience so they can build profciency in concepts and use their study time efectively. 
WileyPLUS with ORION helps students learn by learning about them.

WileyPLUS with ORION is great as:
•	 An adaptive pre-lecture tool that assesses your students’ conceptual knowledge so they 

come to class better prepared.
•	 A personalized study guide that helps students understand both strengths and areas 

where they need to invest more time, especially in preparation for quizzes and exams. 

Unique to ORION, students begin by taking a quick diagnostic for any chapter. 
Tis will determine each student’s baseline profciency on each topic in the chapter. 
Students see their individual diagnostic report to help them decide what to do next 
with the help of ORION’s recommendations.

For each topic, students can either Study, or Practice. Study directs the students 
to the specifc topic they choose in WileyPLUS, where they can read from the 
e-textbook, or use the variety of relevant resources available there. Students can 
also practice, using questions and feedback powered by ORION’s adaptive learn-
ing engine. Based on the results of their diagnostic and ongoing practice, ORION 
will present students with questions appropriate for their current level of under-
standing, and will continuously adapt to each student, helping them build their 
profciency.

ORION includes a number of reports and ongoing recommendations for students 
to help them maintain their profciency over time for each topic. Students can 
easily access ORION from multiple places within WileyPLUS. It does not require 
any additional registration, and there will not be any additional charge for students 
using this adaptive learning system.MAINTAIN

PRACTICE

BEGIN



Hallmark Features of WileyPLUS for Organic Chemistry, 2e 
Breadth and Depth of Assessment: Four unique silos of assessment are available to 
Instructors for creating online homework and quizzes.

REACTION EXPLOrEr

IN CHAPTEr/EOC ASSESSMENT

CONCEPT MASTErY

TEST BANK

MEANINGFUL PRACTICE OF mECHANISmS AND SYNTHESIS 
PROBLEmS (A DATABASE OF OVER 100,000 QUESTIONS)

100% OF REVIEW PROBLEmS AND END OF CHAPTER  
QUESTIONS ARE CODED FOR ON LINE ASSESSmENT

PRE-BUILD CONCEPT mASTERY ASSIGNmENTS ( FROm 
DATABASE OF OVER 12,500 QUESTIONS)

RICH TESTBANK CONSISTING OF OVER 3,000 QUESTIONS

W I L E Y P L U S  A S S E S S M E N T          FOR ORGANIC CHEmISTRY

ADDITIONAL INSTRUCTOR RESOURCES

Testbank Authored by Kevin Minbiole, Villanova University and Vidyullata Waghulde, St. 
Louis Community College, Meramec.
PowerPoint Lecture Slides with Answer Slides Authored by James Beil, Lorain County 
Community College.
PowerPoint Art Slides Images selected by Christine Hermann, Radford University.
Personal Response System (“Clicker”) Questions Authored by Cynthia Lamberty, Cloud 
County Community College, Geary County Campus, Neal Tonks, College of Charleston, Christine 
Whitlock, Georgia Southern University.

STUDENT RESOURCES

Student Study Guide and Solutions Manual (ISBN 9781118700815) Authored by David 
Klein. Te second edition of the Student Study Guide and Solutions Manual to accompany 
Organic Chemistry, 2e contains:

•	 More detailed explanations within the solutions for every problem.
•	 Concept Review Exercises
•	 SkillBuilder Review Exercises
•	 Reaction Review Exercises
•	 A list of new reagents for each chapter, with a description of their function.
•	 A list of “Common Mistakes to Avoid” in every chapter.

Molecular Visions™ Model Kit To support the learning of organic chemistry concepts and 
allow students the tactile experience of manipulating physical models, we ofer a molecular 
modeling kit from the Darling Company. Te model kit can be bundled with the textbook or 
purchased stand alone.

CUSTOMIZATION AND FLEXBILE 
OPTIONS TO MEET YOUR NEEDS 

All Access Packs
The All Access Pack for Organic Chemistry, 2e by David Klein gives today’s students everything 
they need for their course anytime, anywhere, and on any device. Te All Access Pack includes:

•	 WileyPLUS
•	 Wiley eText powered by VitalSource
•	 Student Solutions Manual in a binder-ready looseleaf format
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A Review of  
General Chemistry
ELECTRONS, BONDS, AND MOLECULAR PROPERTIES

DId YOU EVER WONdER . . .
what causes lightning?

Believe it or not, the answer to this question is still the sub-
ject of debate (that’s right … scientists have not yet fgured out 

everything, contrary to popular belief  ). Tere are various theories 
that attempt to explain what causes the buildup of electric charge in 
clouds. One thing is clear, though—lightning involves a fow of elec-
trons. By studying the nature of electrons and how electrons fow, it 
is possible to control where lightning will strike. A tall building can 
be protected by installing a lightning rod (a tall metal column at the 
top of the building) that attracts any nearby lightning bolt, thereby 
preventing a direct strike on the building itself. Te lightning rod on 
the top of the Empire State Building is struck over a hundred times 
each year.

Just as scientists have discovered how to direct electrons in a bolt 
of lightning, chemists have also discovered how to direct electrons 
in chemical reactions. We will soon see that although 
organic chemistry is literally defned as the study of 
compounds containing carbon atoms, 
its true essence is actually the 
study of electrons, not atoms. 
Rather than thinking of reactions 
in terms of the motion of atoms, we 
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2      CHAPTER  1    A Review of General Chemistry

must recognize that reactions occur as a result of the motion of electrons. For example, in the 
following reaction the curved arrows represent the motion, or fow, of electrons. Tis fow of 
electrons causes the chemical change shown:

Cl
H

H
H

C Br Cl
H

H
H

+C Br
@ @

Troughout this course, we will learn how, when, and why electrons fow during 
reactions. We will learn about the barriers that prevent electrons from fowing, and we 
will learn how to overcome those barriers. In short, we will study the behavioral pat-
terns of electrons, enabling us to predict, and even control, the outcomes of chemical 
reactions.

Tis chapter reviews some relevant concepts from your general chemistry course that 
should be familiar to you. Specifcally, we will focus on the central role of electrons in form-
ing bonds and infuencing molecular properties.

1.1  Introduction to Organic Chemistry

In the early nineteenth century, scientists classifed all known compounds into two categories: Organic 
compounds were derived from living organisms (plants and animals), while inorganic compounds were 
derived from nonliving sources (minerals and gases). Tis distinction was fueled by the observation 
that organic compounds seemed to possess diferent properties than inorganic compounds. Organic 
compounds were often difcult to isolate and purify, and upon heating, they decomposed more read-
ily than inorganic compounds. To explain these curious observations, many scientists subscribed to 
a belief that compounds obtained from living sources possessed a special “vital force” that inorganic 
compounds lacked. Tis notion, called vitalism, stipulated that it should be impossible to convert 
inorganic compounds into organic compounds without the introduction of an outside vital force. 
Vitalism was dealt a serious blow in 1828 when German chemist Friedrich Wöhler demonstrated the 
conversion of ammonium cyanate (a known inorganic salt) into urea, a known organic compound 
found in urine:

Heat

Ammonium cyanate
(Inorganic)

NH4OCN C

O

Urea
(Organic)

H2N NH2

Over the decades that followed, other examples were found, and the concept of vitalism was 
gradually rejected. Te downfall of vitalism shattered the original distinction between organic and 
inorganic compounds, and a new defnition emerged. Specifcally, organic compounds became 
defned as those compounds containing carbon atoms, while inorganic compounds generally were 
defned as those compounds lacking carbon atoms.

Organic chemistry occupies a central role in the world around us, as we are surrounded by 
organic compounds. Te food that we eat and the clothes that we wear are comprised of organic 
compounds. Our ability to smell odors or see colors results from the behavior of organic compounds. 
Pharmaceuticals, pesticides, paints, adhesives, and plastics are all made from organic compounds. In 
fact, our bodies are constructed mostly from organic compounds (DNA, RNA, proteins, etc.) whose 
behavior and function are determined by the guiding principles of organic chemistry. Te responses 
of our bodies to pharmaceuticals are the results of reactions guided by the principles of organic 
chemistry. A deep understanding of those principles enables the design of new drugs that fght disease 
and improve the overall quality of life and longevity. Accordingly, it is not surprising that organic 
chemistry is required knowledge for anyone entering the health professions.

BY THE WAY
There are some 
carbon‑containing 
compounds that are 
traditionally excluded 
from organic classifcation. 
For example, ammonium 
cyanate (seen on this 
page) is still classifed as 
inorganic, despite the 
presence of a carbon 
atom. Other exceptions 
include sodium carbonate 
(Na2CO3) and potassium 
cyanide (KCN), both of 
which are also considered 
to be inorganic compounds. 
We will not encounter 
many more exceptions.
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1.2  The Structural Theory of Matter

In the mid-nineteenth century three individuals, working independently, laid the conceptual foun-
dations for the structural theory of matter. August Kekulé, Archibald Scott Couper, and Alexander 
M. Butlerov each suggested that substances are defned by a specifc arrangement of atoms. As an 
example, consider the following two compounds:

H C

H

H

O C

H

H

H

Dimethyl ether
Boiling point = –23°C

H C

H

H

C O

H

H

H

Ethanol
Boiling point = 78.4°C

Tese compounds have the same molecular formula (C2H6O), yet they difer from each other 
in the way the atoms are connected—that is, they difer in their constitution. As a result, they are 
called constitutional isomers. Constitutional isomers have diferent physical properties and difer-
ent names. Te frst compound is a colorless gas used as an aerosol spray propellant, while the second 
compound is a clear liquid, commonly referred to as “alcohol,” found in alcoholic beverages.

According to the structural theory of matter, each element will generally form a predictable 
number of bonds. For example, carbon generally forms four bonds and is therefore said to be 
tetravalent. Nitrogen generally forms three bonds and is therefore trivalent. Oxygen forms two 
bonds and is divalent, while hydrogen and the halogens form one bond and are monovalent 
(Figure 1.1).

Tetravalent Trivalent Divalent Monovalent

C N

Carbon generally
forms four bonds.

Nitrogen generally
forms three bonds.

O

Oxygen generally
forms two bonds.

H X

Hydrogen and halogens
generally form one bond.

(where X = F, Cl, Br, or I)
FIGUre 1.1
Valencies of some common 
elements encountered 
in organic chemistry.

SKILLBUILDER

LEARN the skill

1.1  DETERMINING THE CONSTITUTION OF SMALL MOLECULES

There is only one compound that has molecular formula C2H5Cl. Determine the constitution 
of this compound.

SOlUtIOn 
The molecular formula indicates which atoms are present in the compound. In this example, 
the compound contains two carbon atoms, fve hydrogen atoms, and one chlorine atom. 
Begin by determining the valency of each atom that is present in the compound. Each 
carbon atom is expected to be tetravalent, while the chlorine and hydrogen atoms are all 
expected to be monovalent:

C C
H

C2 H5 Cl

H H H H Cl

STEP 1
Determine the valency 

of each atom in the 
compound.



4      CHAPTER  1      A Review of General Chemistry

1.3  Electrons, Bonds, and Lewis Structures

What Are Bonds?
As mentioned, atoms are connected to each other by bonds. Tat is, bonds are the “glue” that hold 
atoms together. But what is this mysterious glue and how does it work? In order to answer this ques-
tion, we must focus our attention on electrons.

Te existence of the electron was frst proposed in 1874 by George Johnstone Stoney (National 
University of Ireland), who attempted to explain electrochemistry by suggesting the existence of 
a particle bearing a unit of charge. Stoney coined the term electron to describe this particle. In 
1897, J. J. Tomson (Cambridge University) demonstrated evidence supporting the existence of 
Stoney’s mysterious electron and is credited with discovering the electron. In 1916, Gilbert Lewis 
(University of California, Berkeley) defned a covalent bond as the result of two atoms sharing a 
pair of electrons. As a simple example, consider the formation of a bond between two hydrogen 
atoms:

DH = –436 kJ/molH+H H H

Each hydrogen atom has one electron. When these electrons are shared to form a bond, there is 
a decrease in energy, indicated by the negative value of DH. Te energy diagram in Figure 1.2 
plots the energy of the two hydrogen atoms as a function of the distance between them. Focus on 
the right side of the diagram, which represents the hydrogen atoms separated by a large distance. 
Moving toward the left on the diagram, the hydrogen atoms approach each other, and there are 
several forces that must be taken into account: (1) the force of repulsion between the two nega-
tively charged electrons, (2) the force of repulsion between the two positively charged nuclei, and 
(3) the forces of attraction between the positively charged nuclei and the negatively charged elec-
trons. As the hydrogen atoms get closer to each other, all of these forces get stronger. Under these 

STEP 2
Determine how the 

atoms are connected—
atoms with the highest 

valency should be 
placed at the center 

and monovalent atoms 
should be placed at the 

periphery.

Now we must determine how these atoms are connected. The atoms with the most bonds 
(the carbon atoms) are likely to be in the center of the compound. In contrast, the chlorine 
atom and hydrogen atoms can each form only one bond, so those atoms must be placed at 
the periphery. In this example, it does not matter where the chlorine atom is placed. All six 
possible positions are equivalent.

H C

H

H

C Cl

H

H

1.1  Determine the constitution of the compounds with the following molecular formulas:

(a)  CH4O 	  (b)  CH3Cl 	  (c)  C2H6 	  (d)  CH5N  

(e)  C2F6 	  (f )  C2H5Br 	  (g)  C3H8

1.2  There are two constitutional isomers with molecular formula C3H7Cl, because there 
are two possibilities for the location of the chlorine atom. It can be connected either to 
the central carbon atom or to one of the other two (equivalent) carbon atoms. Draw both 
isomers.

1.3  Draw three constitutional isomers that have molecular formula C3H8O.

1.4  Draw all constitutional isomers that have molecular formula C4H10O.

Try Problems 1.34, 1.46, 1.47, 1.54

PractIce the skill

ApplY the skill

need more PRACTICE?
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circumstances, the electrons are capable of moving in such a way so as to minimize the repulsive 
forces between them while maximizing their attractive forces with the nuclei. Tis provides for a 
net force of attraction, which lowers the energy of the system. As the hydrogen atoms move still 
closer together, the energy continues to be lowered until the nuclei achieve a separation (inter-
nuclear distance) of 0.74 angstroms (Å). At that point, the force of repulsion between the nuclei 
begins to overwhelm the forces of attraction, causing the energy of the system to increase. Te 
lowest point on the curve represents the lowest energy (most stable) state. Tis state determines 
both the bond length (0.74 Å) and the bond strength (436 kJ/mol).

BY THE WAY
1 Å = 10-10 meters.

Internuclear distance0.74 Å

–436 kJ/mol

0

Energy

H H

H H

H H

H H
H H+

Drawing the Lewis Structure of an Atom
Armed with the idea that a bond represents a pair of shared electrons, Lewis then devised a method 
for drawing structures. In his drawings, called Lewis structures, the electrons take center stage. We 
will begin by drawing individual atoms, and then we will draw Lewis structures for small molecules. 
First, we must review a few simple features of atomic structure:

•	 Te nucleus of an atom is comprised of protons and neutrons. Each proton has a charge of 
+1, and each neutron is electrically neutral.

•	 For a neutral atom, the number of protons is balanced by an equal number of electrons, 
which have a charge of -1 and exist in shells. Te frst shell, which is closest to the nucleus, 
can contain two electrons, and the second shell can contain up to eight electrons.

•	 Te electrons in the outermost shell of an atom are called the valence electrons. Te num-
ber of valence electrons in an atom is identifed by its group number in the periodic table 
(Figure 1.3).

Te Lewis dot structure of an individual atom indicates the number of valence electrons, which are 
placed as dots around the periodic symbol of the atom (C for carbon, O for oxygen, etc.). Te place-
ment of these dots is illustrated in the following SkillBuilder.

FIGUre 1.3
A periodic table showing 
group numbers.

Transition
Metal

Elements

1A 8A

2A 3A 4A 5A 6A 7AH

Li Be

Na Mg

K Ca

Rb Sr

Cs Ba

B C

Al Si

Ga Ge

In Sn

Tl Pb

N O

P S

As Se

Sb Te

Bi Po

F Ne

He

Cl Ar

Br Kr

I Xe

At Rn

FIGUre 1.2
An energy diagram showing the energy as a function of the 
internuclear distance between two hydrogen atoms.
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Drawing the Lewis Structure of a Small Molecule
Te Lewis dot structures of individual atoms are combined to 
produce Lewis dot structures of small molecules. Tese draw-
ings are constructed based on the observation that atoms tend to 
bond in such a way so as to achieve the electron confguration 
of a noble gas. For example, hydrogen will form one bond to 
achieve the electron confguration of helium (two valence electrons), while second-row elements 
(C, N, O, and F) will form the necessary number of bonds so as to achieve the electron confgura-
tion of neon (eight valence electrons).

C H

H

H

H

CH H
H

H

STEP 1
Determine the number 

of valence electrons.

STEP 2
Place one valence 

electron by itself on each 
side of the atom.

STEP 3
If the atom has more 

than four valence 
electrons, the remaining 
electrons are paired with 

the electrons already 
drawn.

1.5  Draw a Lewis dot structure for each of the following atoms:

(a)	Carbon	 (b)	 Oxygen	 (c)	 Fluorine	 (d)	 Hydrogen

(e)	Bromine	 (f )	 Sulfur	 (g)	 Chlorine	 (h)	 Iodine

1.6  Compare the Lewis dot structure of nitrogen and phosphorus and explain why you 
might expect these two atoms to exhibit similar bonding properties.

1.7  Name one element that you would expect to exhibit bonding properties similar to 
boron. Explain.

1.8  Draw a Lewis structure of a carbon atom that is missing one valence electron (and 
therefore bears a positive charge). Which second-row element does this carbon atom 
resemble in terms of the number of valence electrons?

1.9  Draw a Lewis structure of a carbon atom that has one extra valence electron (and 
therefore bears a negative charge). Which second-row element does this carbon atom 
resemble in terms of the number of valence electrons?

PractIce the skill

ApplY the skill

SKILLBUILDER

LEARN the skill

1.2  DRAWING THE LEWIS DOT STRUCTURE OF AN ATOM

Draw the Lewis dot structure of (a) a boron atom and (b) a nitrogen atom.

SOlUtIOn
(a)	� In a Lewis dot structure, only valence electrons are drawn, so we must frst determine 

the number of valence electrons. Boron belongs to group 3A on the periodic table, and 
it therefore has three valence electrons. The periodic symbol for boron (B) is drawn, and 
each electron is placed by itself (unpaired) around the B, like this:

B

(b)	� Nitrogen belongs to group 5A on the periodic table, and it therefore has fve valence 
electrons. The periodic symbol for nitrogen (N) is drawn, and each electron is placed by 
itself (unpaired) on a side of the N until all four sides are occupied:

N

	� Any remaining electrons must be paired up with the electrons already drawn. In the case 
of nitrogen, there is only one more electron to place, so we pair it up with one of the four 
unpaired electrons (it doesn’t matter which one we choose):

N
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Draw the Lewis structure of CH2O.

SOlUtIOn
There are four discrete steps when drawing a Lewis structure: First determine the number of 
valence electrons for each atom:

H HC O

Then, connect any atoms that form more than one bond. Hydrogen atoms only form one 
bond each, so we will save those for last. In this case, we connect the C and the O:

OC

Next, connect all hydrogen atoms. We place the hydrogen atoms next to carbon, because 
carbon has more unpaired electrons than oxygen:

H
OH C

Finally, check to see if each atom (except hydrogen) has an octet. In fact, neither the carbon 
nor the oxygen has an octet, so in a situation like this, the unpaired electrons are shared as 
a double bond between carbon and oxygen:

H
OH C

H
OH C

Now all atoms have achieved an octet. When drawing Lewis structures, remember that you 
cannot simply add more electrons to the drawing. For each atom to achieve an octet the 
existing electrons must be shared. The total number of valence electrons should be correct 
when you are fnished. In this example, there was one carbon atom, two hydrogen atoms, 
and one oxygen atom, giving a total of 12 valence electrons (4 + 2 + 6). The drawing above 
MUST have 12 valence electrons, no more and no less.

1.10  Draw a Lewis structure for each of the following compounds:

(a)  C2H6 	  (b)  C2H4 	  (c)  C2H2  

(d)  C3H8 	  (e)  C3H6 	  (f )  CH3OH

1.11  Borane (BH3) is very unstable and quite reactive. Draw a Lewis structure of borane 
and explain the source of the instability.

1.12  There are four constitutional isomers with molecular formula C3H9N. Draw a Lewis 
structure for each isomer and determine the number of lone pairs on the nitrogen atom in 
each case.

Try Problems 1.35, 1.38, 1.42

STEP 1
Draw all individual 

atoms.

STEP 2
Connect atoms that 
form more than one 

bond.

STEP 3
Connect the 

hydrogen atoms.

STEP 4
Pair any unpaired 

electrons so that each 
atom achieves an 

octet.

Tis observation, called the octet rule, explains why carbon is tetravalent. As just shown, 
it can achieve an octet of electrons by using each of its four valence electrons to form a bond.  
Te octet rule also explains why nitrogen is trivalent. Specifcally, 
it has fve valence electrons and requires three bonds in order to 
achieve an octet of electrons. Notice that the nitrogen atom con-
tains one pair of unshared, or nonbonding, electrons, called a lone 
pair.

In the next chapter, we will discuss the octet rule in more detail; in particular, we will explore when 
it can be violated and when it cannot be violated. For now, let’s practice drawing Lewis structures.

N HH

H

NH H
H

PractIce the skill

ApplY the skill

need more PRACTICE?

SKILLBUILDER

LEARN the skill

1.3  DRAWING THE LEWIS STRUCTURE OF A SMALL MOLECULE
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SKILLBUILDER

LEARN the skill

1.4  CALCULATING FORMAL CHARGE

Consider the nitrogen atom in the structure below and determine if it has a formal charge:

N

H

H

H H

SOlUtIOn
We begin by determining the appropriate number of valence electrons for a nitrogen atom. 
Nitrogen is in group 5A of the periodic table, and it should therefore have fve valence 
electrons. 

Next, we count how many valence electrons are exhibited by the nitrogen 
atom in this particular example:

1.4  Identifying Formal Charges

A formal charge is associated with any atom that does not exhibit the appropriate number of valence 
electrons. When such an atom is present in a Lewis structure, the formal charge must be drawn. 
Identifying a formal charge requires two discrete tasks:

	1.	 Determine the appropriate number of valence electrons for an atom.
	2.	 Determine whether the atom exhibits the appropriate number of electrons.

Te frst task can be accomplished by inspecting the periodic table. As mentioned earlier, the 
group number indicates the appropriate number of valence electrons for each atom. For example, 
carbon is in group 4A and therefore has four valence electrons. Oxygen is in group 6A and has six 
valence electrons.

After identifying the appropriate number of electrons for each atom in a Lewis 
structure, the next task is to determine if any of the atoms exhibit an unexpected num-
ber of electrons. For example, consider the following structure:

STEP 1
Determine the 

appropriate number 
of valence electrons.

STEP 3
Assign a formal 

charge.

O

H HC

H

Each hydrogen atom has one valence electron, as expected. Te carbon atom also has 
the appropriate number of valence electrons (four), but the oxygen atom does not. Te 
oxygen atom in this structure exhibits seven valence electrons, but it should only have 
six. In this case, the oxygen atom has one extra electron, and it must therefore bear a 
negative formal charge, which is indicated like this: C

H

O

H H

@

Each line represents two shared electrons (a bond). For our purposes, we must split 
each bond apart equally, and then count the number of electrons on each atom:

C HH

H

O

N H

H

H

H

In this case, the nitrogen atom exhibits only four valence electrons. It is missing one electron, 
so it must bear a positive charge, which is shown like this:

NH H

H

H
!

STEP 2
Determine the actual 

number of valence 
electrons in this case.
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H HC

H(f )

H C C

H

H

O

(g)

AlCl Cl

Cl

Cl

Cl

(h)

C C

H

H

H N

H

H O

O

(i)

AlH H

H

H

(a)
O

H H

H

(b)

H NC

H

H

HC

H

H

(c) H H

H

C

O

(d)

H HC

H(e)

1.14  Draw a structure for each of the following ions; in each case, indicate which atom 
possesses the formal charge:

(a)  BH4
-        (b)  NH2

-        (c)  C2H5
+

Try Problem 1.41

1.5  Induction and Polar Covalent Bonds

Chemists classify bonds into three categories: (1) covalent, (2) polar covalent, and (3) ionic. Tese 
categories emerge from the electronegativity values of the atoms sharing a bond. Electronegativity is 
a measure of the ability of an atom to attract electrons. Table 1.1 gives the electronegativity values for 
elements commonly encountered in organic chemistry.

1.13  Identify any formal charges in the structures below:

TABLE 1.1  ELECTRONEGATIVITY VALUES OF SOME COMMON ELEMENTS

H
2.1

Li
1.0

Be
1.5

B
2.0

C
2.5

N
3.0

O
3.5

F
4.0

K
0.8

Br
2.8

Na
0.9

Mg
1.2

Al
1.5

Si
1.8

P
2.1

S
2.5

Cl
3.0

Increasing electronegativity

Increasing
electronegativity

When two atoms form a bond, one critical consideration allows us to classify the bond: What 
is the diference in the electronegativity values of the two atoms? Below are some rough guidelines:

If the diference in electronegativity is less than 0.5, the electrons are considered to be equally 
shared between the two atoms, resulting in a covalent bond. Examples include C!C and C!H:

CC HC

Te C!C bond is clearly covalent, because there is no diference in electronegativity between the 
two atoms forming the bond. Even a C!H bond is considered to be covalent, because the diference 
in electronegativity between C and H is less than 0.5.

If the diference in electronegativity is between 0.5 and 1.7, the electrons are not shared 
equally between the atoms, resulting in a polar covalent bond. For example, consider a bond 
between carbon and oxygen (C!O). Oxygen is signifcantly more electronegative (3.5) 
than carbon (2.5), and therefore oxygen will more strongly attract the electrons of the bond.  

PractIce the skill

ApplY the skill

need more PRACTICE?




